If it's not what You are looking for type in the equation solver your own equation and let us solve it.
63x-x^2=810
We move all terms to the left:
63x-x^2-(810)=0
We add all the numbers together, and all the variables
-1x^2+63x-810=0
a = -1; b = 63; c = -810;
Δ = b2-4ac
Δ = 632-4·(-1)·(-810)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-27}{2*-1}=\frac{-90}{-2} =+45 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+27}{2*-1}=\frac{-36}{-2} =+18 $
| (72-x)=2x | | 9p+14=50 | | 2w+3=1/8 | | X=56+x | | Y-5=3x+7 | | 5x+3x-6x+4=50 | | 18x-8+11x-6=90 | | 15x-8+11x+6=90 | | 15x-8+11x=84 | | 5m+20=5(m+1) | | t+22+7t+t+19=180 | | 3a+7+a+13=180 | | w-10+2w+2w-48=180 | | 2(3x-1)+4=5x+8 | | 4w+w+19+5w-15=180 | | 4(2x-3)+7=5x+1 | | 2x-18+2x-16+x-12=180 | | v-10+3v-50+2v-48=180 | | 8x-4x+18=28 | | u+10+4u-39+59=180 | | w+15+w+6+w-18=180 | | z+14+z-5+z+9=180 | | 62+2s-12+s-2=180 | | 2x+4x-16=24 | | 2(3y+4)-5=3y-1 | | 6(x-6)+8=6x-8 | | 90=1/2*15*h | | 3x-15=x^2+11x+1 | | 1/6(3z+2)=-3/4z | | 7(x+3=28 | | 2x+2x+5x-2+5x-2=44 | | 14x-4=44 |